
Abstract. We discuss the ``three class'' approximation
to full multireference perturbation CI, which greatly
reduces the computational e�ort by restricting the
summation of diagrams to determinants belonging to a
subspace of the zero-order space. In the framework of
the CIPSI algorithm, we propose a new extrapolation
procedure allowing recovery of the full ``two class''
results. The new procedure is applied to complete active
spaces (CAS) and to individually selected zero-order
spaces. Comparison with a full two class calculation on a
CAS shows a reduction of computer time of one or two
orders of magnitude in the tests presented here, with an
accuracy in the order of 0.1 kcal/mol. Our procedure can
thus compete with the CASPT2 algorithm, speci®cally
conceived to deal with CAS. In the case of selected zero-
order spaces, the speed-up is less dramatic but the
method still retains its advantages.
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1 Introduction

The evaluation of correlation energy still represents a
challenge for computational quantum chemistry. Di�er-
ent approaches (both variational and perturbative) are
applied routinely when a single determinant (or con®g-
uration) is a reasonable description for the state of the
system. The ground state of several molecules satis®es
this condition: in this case methods such as MP2, MP4
or SDCI have proved to be good approximations. These
methods fail when applied to the study of states where
several determinants are necessary for a ®rst approxi-
mate description (static correlation) as in the case of
bond breaking, of transition metal compounds and of
excited states. Multireference perturbation CI methods
are useful tools for the study of these systems.

One widely used multireference perturbation method
is the CIPSI algorithm (con®guration interaction by
perturbation with multicon®gurational zeroth-order
wave functions selected by iterative process) ®rst pro-
posed by Huron et al. [1] and further extended by the
Toulouse group [2, 3] (see also [4] for a critical overview)
and by ourselves [5, 6]. Second-order perturbation the-
ory is applied to the eigenvalues of the CI Hamiltonian
projected in a determinantal subspace S. Two di�erent
partitions of the Hamiltonian are considered, Epstein±
Nesbet (EN) and Mùller-Plesset baricentric (MPB).
Until recently, only the latter was implemented in the
most e�cient version of the program, based on dia-
grammatic theory [5]. The implementation of the EN
partition in the diagrammatic code has been completed
recently by one of us [7]. Similar strategies have been
proposed by other authors, even in recent years (see
[8±15] and references therein).

In the original CIPSI algorithm, the zero-order S
subspace is iteratively selected by inclusion of all the
determinants whose contribution to the ®rst-order wave
function correction in the previous step is found to be
larger than a certain threshold gS. Recently we have
established a new way of selecting theS space, based on
the requirement that the ®rst-order corrections to the
wave functions should have the same norms for all states
with all molecular geometries (see the second paper in
this series [16]). The new selection produces a more
balanced treatment of di�erent states with di�erent ge-
ometries. A popular alternative to individual selection of
determinants in S is to de®ne the multireference space
as a complete active space, CAS �S � CAS�. Exploiting
the CASSCF wave function properties leads to the very
e�cient CASPT2 algorithm [17].

The CIPSI method, especially in the diagrammatic
formulation, can be made computationally very e�cient
by resorting to an approximate procedure, hereafter
called a ``three class'' calculation. The basic idea was put
forward by Evangelisti et al. [2] and later reformulated
by us [6]. In this paper we present a study of this ap-
proximation. In the perturbation step of a three class
calculation one takes into account only the single and
double excitations which are generated from a subspace
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G of the variational space S. Having to deal with S
spaces of increasing size, thanks to the improvement of
the computational facilities and aiming at better accu-
racy, we have devised an extrapolation procedure which
allows the results of a full perturbation treatment (``two
class calculation'', G � S) to be recovered.

The next section presents the method and the fol-
lowing ones a few test calculations using the N2 and 2N2

systems (for N2 an FCI benchmark calculation is avail-
able [18]) and the CH3NO molecule (at present under
study in our laboratory). The test calculations illustrate
the application of our extrapolation procedure in the
cases of individually selected spaces and of CAS.

In the case of a CAS zero-order space the speed-up
obtained with the extrapolation procedure is so large
that our approach can compete with the CASPT2 one as
has been implemented in the MOLCAS-3 package [19].
It is important to note that the latter algorithm was
speci®cally conceived to deal with a CASSCF zero-order
wave function, while the CIPSI method can treat one-
electron functions and zero-order spaces however they
are de®ned.

2 Method

In this section we recall ®rst the CIPSI algorithm and the
formulation of the three class calculation as it has been
implemented by our group [6]. Brie¯y the original CIPSI
method is based on the partitioning of the FCI
space into two subspaces called S and Q (two class
calculation). The S space contains the most important
determinants describing the electronic states under
investigation. The Hamiltonian projected onto the S
space is diagonalized and the eigenstates are taken as the
zero-order description of the true wave functions:

P̂ĤP̂ W�0�m i
�� � E�MR�

m W�0�m i
�� �1�

P̂ �
X
N2S
jNihN j jW�0�m i �

X
N2S

Cm
N jNi �2�

The contributions of the determinants jIi 2 Q are
evaluated by a second-order Rayleigh-SchroÈ dinger treat-
ment: thus, only those jIi that are single or double
excitations from some jNi 2S contribute. Given a
partition of the CI Hamiltonian:

Ĥ � Ĥ0 � V̂ �3�
the second-order energy correction is:

E�2�m � ÿ
X
I2P

hI V̂�� ��W�0�m i2
EI ÿ E�0�m

�4�

or

E�2�m � ÿ
X

M ;N2S
Cm

M Cm
N

X
I2P

hM V̂
�� ��IihI V̂�� ��Ni
EI ÿ E�0�m

�5�

Here P is the subspace of Q collecting all single and
double excitations from S. Equations (4) and (5) are
totally equivalent at this level of the treatment; they

correspond to the traditional and to the diagrammatic
implementation of the algorithm, respectively.

As pointed out before, two di�erent partitions of the
Hamiltonian (3) are implemented in our programs. Only
the Ĥ0 operator needs to be explicitly de®ned, while V̂
is simply Ĥÿ Ĥ0. We want the basis f W�0�m i 2S;

��
jIi 2 Pg to form a set of eigenstates of Ĥ0:

Ĥ0 W�0�m i � E�0�m W�0�m i
���� �6�

Ĥ0 Ii � EI jj Ii �7�
In the MPB partition the eigenvalues of Ĥ0 are the
expectation values of the diagonal part of the Fock
operator:

E�0�m � hW�0�m

��F̂diag

��W�0�m i �
X
N2S

��Cm
N

��2EN �8�

EI � I
��F̂diag

��I
 � �9�
EI and EN are sums of one-electron matrix elements Fii
over the occupied spin orbitals of the determinants jIi
and jNi. The Fii coincide with the ``orbital energies''
when the orbitals are the canonical SCF ones.

In the EN partition, Ĥ0 is the diagonal part
of the matrix representation of Ĥ in the basis
f��W�0�m i 2S; jIi 2 Pg
E�0�m � hW�0�m

��Ĥ��W�0�m i � E�MR�
m �10�

EI � hI
��Ĥ��Ii �11�

In this case E�0�m coincides with the multireference energy
E�MR�

m .
Each of the two partitions o�ers some advantages

and but also involves problems (for discussions see refs.
[4, 7, 20]). Brie¯y, with respect to EN, MPB has better
formal properties of separability [4] and of independence
on the one-electron basis (localization versus delocali-
zation of the molecular orbitals [20]). The MPB partition
may yield small denominators, which cause the sum-
mations (4±5) to blow up (``intruder states''), especially
with large, non-selected, spaces; the same may occur
with CASPT2 [21]. The EN partition is not subject to the
intruder state problem; accumulated experience and
theoretical analysis [22] indicate that the EN results
converge more rapidly than the MPB ones to the full CI
limit, when expanding the S space. Generally it is very
useful to compare the results of both partitions.

In this paper we will not describe the selection pro-
cedure for the S space, as it is not really important in
this context and will be the subject of a separate paper
[16]. Su�ce to say that a few CIPSI steps are usually
performed and the S space is iteratively enlarged in-
cluding the determinants that have produced a large
contribution in the perturbation step of the previous
calculation.

In a two class CIPSI calculation there are two dif-
ferent approximations that introduce an error with
respect to the FCI limit: the truncation of the CI space
to S�P; the approximate evaluation of the contri-
bution of the P space, by second-order perturbation
theory.
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It is obvious that enlarging the S space reduces the
magnitude of both errors. Indeed, if more determinants
are introduced in the S space, their contributions are
taken into account variationally, i.e. at the in®nite order
of perturbation theory. For the remaining determinants
of P, an improved zero-order wave function usually
guarantees a more accurate second-order treatment. At
the same time, the P space is enlarged and S�P ap-
proaches the FCI space. On the other hand, the com-
puter time needed for the perturbation step increases
approximately as N2

S, where NS is the dimension of S.
The three class calculation has been devised in order

to achieve a compromise between a large S space and a
reasonably time-consuming calculation. The dimension
of the P space is reduced by choosing only the deter-
minants generated as single and double excitations from
a subspace G � S. G contains the ``most important''
determinants of S. We shall see later how to de®ne the
G subspace properly. The three class approximation is
not quite the same for the original algorithm and for the
diagrammatic one. For the former, no further change is
made, beyond truncating the summation in Eq. (4) be-
cause of the reduction of the P space. In the diagram-
matic implementation [5, 7], the summation on M and N
is limited to the determinants in G. Practically, this
means neglecting all the interactions of the determinants
jIi 2 P with the component of jW�0�m i outside G. As a
consequence, the numerical results of the two versions of
a three class calculation with the same G space are
slightly di�erent.

In this paper we shall concentrate on the diagram-
matic three class algorithm, because it is particularly
e�cient, the computing time being dependent only on
the dimension of G, NG, and almost independent of NS.
Since Eq. (5) is a quadratic form in the Cm

N coe�cients, it
seems quite natural to suppose that the second-order
correction to the energy is approximately linear with
respect to the square norm of the projection of the zero-
order wave function

��W�0�m i over the G space. The ``G

weight'' W �m�
G of

��W�0�m i is
W �m�
G �

X
N2G

��Cm
N

��2 �12�

Given a set of thresholds s1 < s2 < � � � < snf g it is
possible to de®ne a set of G spaces G1;G2; � � � ;Gnf g as
the minimal sets for which the relations

W �m�
Gj
�
X
N2Gj

��Cm
N

��2 � sj 8 m �13�

are satis®ed. Note that dim�Gjÿ1� � dim�Gj� �
dim�Gj�1�. This de®nition of the G space allows the
magnitude of the approximation introduced with the
three class scheme to be controlled, in a balanced way
for several electronic states. To test our hypothesis we
have modi®ed the diagrammatic code in such a way that
the results of the calculations with the n Gj spaces of
increasing size can be obtained with a single run. The
extra cost with respect to a single calculation with the
largest Gj is negligible.

The following sections present test calculations using
di�erent molecules and with CAS or with individually

selected zero-order spaces. The results show that E�2�m is
in a good measure linear in WG if this parameter is suf-
®ciently close to 1. A weighted least-square linear ®t of
E�2�m versus WG, followed by an extrapolation to WG � 1,
allows recovery of the results of a two class calculation
with excellent accuracy. The weights used in the ®tting
procedure have been chosen as 1=�1ÿ WGj�. The e�-
ciency ratio of this procedure with respect to a complete
two class calculation strongly depends on the required
accuracy and on the nature of the S space (selected or
CAS). In order to make meaningful comparisons of the
computing times, all the calculations have been per-
formed on an IBM RISC/6000 590 workstation.

3 Test calculations: N2 and 2N2

The N2 molecule has been used in a ®rst series of test
calculations because for this system an FCI study for a
subset of the valence electrons has been published [18].
In this study the one-electron basis is provided by a
CASSCF calculation involving six orbitals and six
electrons. In the CI the 1s and 2s orbitals are frozen
and only the six 2p electrons are fully correlated. For
larger systems (four heavy atoms or more) no FCI
calculations have been made, given the prohibitive
growth of the FCI expansion with the dimension of
the basis. Our interest is to test the extrapolation
procedure here proposed on systems of this size, so we
have considered two non-interacting N2 molecules for
which the FCI energy is obviously twice the FCI energy
of one molecule.

The test calculations on N2 and 2N2 have been per-
formed using Bauschlicher's DZP �9s5p1d�=�4s2p1d�
modi®cation [18] of Huzinaga's basis set [23]. In order to
allow a direct comparison of our results with the FCI
ones, CASSCF orbitals have been obtained and the 1s
and 2s orbitals are kept frozen in the CI procedure. Two
di�erent choices of the S space are discussed: the CAS
used in the CASSCF procedure and a space selected
according to the CIPSI scheme [16].

We discuss ®rst the case of a CAS zero-order space.
The N2 molecule is a rather small system for testing our
extrapolation procedure. The CAS space considered by
Bauschlicher and Langho� [18] and in the CASPT2 [17]
calculations consists of 56 determinants in the D2h
symmetry and either the CASPT2 or our two class cal-
culation use only a few seconds of CPU time. Our MPB
results and the CASPT2 ones are in good agreement.
The errors with respect to FCI are DEMPB � 0:004878
and DEPT2 � 0:004914 a.u. at RNN � 2:10 bohr; DEMPB �
0:000801 and DEPT2 � 0:000264 a.u. at RNN � 50 bohr.

For the 2N2 system, two di�erent geometries are
considered: in both the distance between the two N2

molecules is very large. In the ®rst (called in the fol-
lowing ``eq-eq'') RNN � 2:10 bohr for each of the
two molecules, while in the second (``diss-diss'')
RNN � 50 bohr. The same distances were employed
in the FCI [18] and in the CASPT2 calculations [17]. A
12-electron/12-orbital CAS space for the 2N2 system,
consistent with the 6/6 CAS of a single N2 molecule,
contains 214 032 determinants: we ran our calculations
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in the C2v symmetry, with two co-linear N2 molecules, in
order to localize the orbitals on each N2 subsystem. It is
clear that this space contains a lot of meaningless charge
transfer excitations: this may be considered an extreme
example of the inconvenience which can be met when an
a priori zero-order space is de®ned, namely the inclusion
of a large number of useless determinants. In fact, when
excluding the charge transfer determinants, the dimen-
sion of the S space reduces to NS � 4360. We have
employed this reduced space, which is in all respects
equivalent to the CAS space, in the CIPSI calculations.
It is therefore unfair to compare the CIPSI and CASPT2
computing times, but this shows the possible advantage
of a procedure applicable to a completely general zero-
order space.

For a discussion of the performance of three class
calculations with extrapolation we only consider the
``eq-eq'' geometry, because in the CAS calculation the
``diss-diss'' wave function is described by a single con-
®guration with 12 unpaired electrons. We show in
Table 1 and in Fig. 1 a comparison between the full two
class calculation and the extrapolated one. The size of
the G space, NG, even with WG very close to 1, is dras-
tically reduced with respect to NS: therefore we obtain a
large speed-up (a factor of 12) with errors in the energies
smaller than 10ÿ4 a.u. Notice that the energy is not
merely linear but practically constant in the range of WG

considered here. In fact, the simple three class procedure
without extrapolation may yield very accurate results for
CAS zero-order spaces. A three class calculation with
WG � 0:99999 (1486 determinants) is still 4 times faster
than the full two class treatment, with negligible errors:
ÿ5 � 10ÿ6 a:u: (MPB) and ÿ6 � 10ÿ6 a:u: (EN).

The extrapolation procedure has also been tested in
the case of individually selected S spaces. The S space
for both eq-eq and diss-diss 2N2 was iteratively enlarged
until the square norm of the ®rst-order EN correction to
the wave function was reduced to 0.0030. In spite of the
smaller size NS, this choice of the S space is inherently
better than the previous one (S � CAS): it yields
smaller perturbation corrections to the wave functions
(as explicitly requested by the selection procedure [16])
and a closer agreement between MPB and EN results
(see Table 1). Also the dissociation energies (computed
as half the di�erence between diss-diss and eq-eq) are
closer to the FCI limit [18]: the errors are )0.001748 and
0.001318 a.u. for MPB and EN respectively, while with
S � CAS we get )0.003312 and 0.003243 a.u. A six-
point extrapolation procedure (WG � 0:992; 0:993; 0:994;

0:995; 0:996; 0:997) has been applied and the results
compared with the full two class ones (see Table 1 and
Fig. 2).

With a selected S space the extrapolation procedure
yields a lesser speed-up (about 3 times, with the pa-
rameters we have chosen) and a larger loss in accuracy,
in comparison with the case S � CAS. Moreover, the
slopes of the ®tting straight lines are not negligible and
not the same for the two geometries. This behaviour is
due to the individual selection, which ensures that all the
determinants inS have non-negligible coe�cients in the
zero-order wave functions. Even so, the extrapolated
results for the selected S space di�er from the full two
class ones by only about 0.0005 a.u.

We note that the extrapolation improves the evalu-
ation of dissociation energies, with respect to a three
class calculation with a single G space, because the
slopes of the energy versus WG plots are di�erent for
the eq-eq and the diss-diss geometries. The errors in
dissociation energy, introduced by the three class +
extrapolation procedure, with respect to a full two class
calculation, are )0.000480 and )0.000466 a.u. for MPB
and EN respectively: they are substantially smaller than
the errors of two class perturbation versus FCI (see
above).

Fig. 1. 2N2 EN and MPB ground state energies (CIPSI with
S � CAS, NS � 4360) with the eq-eq geometry (see text). The
numbers near the points are the dimensions of the Gj spaces. The
points with WG � 1 correspond to a full two class calculation.
� � points used in the extrapolation; � � points obtained with full
calculation, shown for comparison

Table 1. Comparison of full
two class and extrapolated three
class results for the 2N2 system
for two di�erent geometries
(``eq-eq'' � two N2 molecules
with RNN � 2:10 bohr,
``diss-diss'' � four N atoms).
Selected and CAS zero-order
spaces are used. Energies in
a.u., CPU times in seconds

Full two class calculation Three class + extrapolationa

MP EN Time MP EN Time

S � CASb (eq-eq) )218.293058 )218.300812 1412 )0.000064 )0.000087 113
SelÿSc (eq-eq) )218.303712 )218.302268 707 )0.000528 )0.000495 227
SelÿSc (diss-diss) )217.657386 )217.657386 45 0.000432 0.000417 31

a Energy di�erence versus full two class results
b TheS space is the 12-electron/12-orbital CAS. The extrapolation is based on six Gj subspaces de®ned
by the thresholds s � 0:9985, 0.9987, 0.9989, 0.9991, 0.9993, 0.9995 (see Fig. 1)
c Individually selected S space (see text). The extrapolation is based on six Gj subspaces de®ned by the
thresholds s � 0:992, 0.993, 0.994, 0.995, 0.996, 0.997 (see Fig. 2)
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4 Test calculations: CH3NO

A second series of calculations has been performed using
the CH3NO molecule, which is at present under
investigation in our laboratory in the framework of a
study of the photochemistry of nitrosocompounds [24].
The 6-31G� Gaussian basis set [25] has been used. As in
the previous section, we present the results of our

extrapolation procedure compared with the correspond-
ing two class calculation, both in the case of CAS and of
selected S spaces. Two di�erent geometries are consid-
ered: the ®rst is the fully optimized geometry for the
ground state (at the CASSCF 10 electrons in 10 orbitals
level), while in the second the CAN bond is broken and
the geometries of the two non-interacting radicals are
separately optimized at a consistent CASSCF level [26].
Besides the total energy of the states (ground state S0,
®rst excited singlet S1 and ®rst excited triplet T1), we
consider in this section the CAN bond dissociation
energy and the vertical excitation energies of the S1 and
T1 states, as an indication of the accuracy of our
extrapolation procedure with energy di�erences.

We report in Table 2 a summary of the results ob-
tained with the absolute energies. With 10 electrons and
10 active orbitals (Cs symmetry), the CAS space consists
of 32144 determinants. A full two class perturbation
calculation using this space is rather expensive: the CPU
time needed can be estimated in about 200 000 s. Given
the results of the previous section in the case of a CAS
zero-order space, we can assume that a three class cal-
culation with WG � 0:99999 is a very good approxima-
tion to a full two class one. As in the case of 2N2, even a
WG so close to 1 results in a G space substantially smaller
than S�NG � 10893 for equilibrium geometry and 2724
for the dissociation). The ground state energies and the
CPU times are reported in the ®rst two rows of Table 2.
These energies are taken as a reference to test the extra-
polation procedure (based on the calculations with
WG � 0:997; 0:998; and 0.999). In Fig. 3 we show the
total energies as functions of WG. Again the straight lines
are very ¯at: this means that even a simple three class
calculation with a very small G space (some hundreds of
determinants in G with an S space of 32144 determi-
nants) gives reasonable results as shown in the previous
section. The accuracy of the extrapolation, versus the
two class results, is better than 0.0003 a.u., with a dra-
matic reduction in computer time. MOLCAS-CASPT2

Fig. 2. 2N2 EN and MPB ground state energies (CIPSI with selected
S space). TheS space is selected in order to obtain a square norm
of the ®rst-order EN correction to the wave function of 0.003. The
numbers near the points are the dimensions of the Gj spaces. The
points with WG � 1 correspond to a full two class calculation.
� � points used in the extrapolation; � � points obtained with full
calculation, shown for comparison

Table 2. Comparison of full
two class and extrapolated thr-
ee class results for three elec-
tronic states of the CH3NO
molecule (``eq''=equilibrium
geometry, S0 and S1 are the ®rst
two singlets and T1 the ®rst
triplet) and for the dissociated
fragments (``diss'' �
dissociation of the CAN bond).
Selected and CAS zero-order
spaces are used.
Energies in a.u., CPU times in
seconds

Full two class calculation Three class + extrapolationa

MP EN Time MP EN Time

S � CASb (S0 eq) )169.295855 )169.325794 26136 )0.000041 )0.000063 991
S � CASb (S0 diss) )169.235875 )169.271133 2247 )0.000239 )0.000272 493
Small selectionc (S0 eq) )169.300493 )169.328003 170 0.000290 0.000398 106
Small selectionc (T1 eq) )169.264949 )169.287373 458 )0.000380 )0.000277 310
Small selectionc (S1 eq) )169.232109 )169.256648 458 )0.000160 )0.000070 310
Small selectionc (S0 diss) )169.237071 )169.270880 78 0.000938 0.001126 60
Large selectiond (S0 eq) )169.309155 )169.320327 1488 )0.000014 0.000000 893
Large selectiond (T1 eq) )169.272806 )169.280492 3910 0.000385 0.000437 2484
Large selectiond (S1 eq) )169.240314 )169.249789 3910 0.000506 0.000545 2484
Large selectiond (S0 diss) )169.245501 )169.262388 327 0.000886 0.001045 237

a Energy di�erences versus full two class results
b TheS space is the 10-electron/10-orbital CAS. The full two class result is approximated as a three class
one with s � 0:99999. The extrapolation is based on three Gj subspaces de®ned by the thresholds
s � 0:997, 0.998, 0.999 (see Fig. 3)
c Individually selected S space, such that the square norm of the EN correction to the wave function is
about 0.100 (see text). The extrapolation is based on six Gj subspaces de®ned by the thresholds
s � 0:970, 0.975, 0.980, 0.985, 0.990, 0.995 (see Fig. 4)
d Individually selected S space, such that the square norm of the EN correction to the wave function is
about 0.060 (see text). Extrapolation as before (see Fig. 5)
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calculations on the same system give energies between
the MPB and EN ones �ÿ169:309354 at equilibrium and
ÿ169:247334 at dissociation), with a CPU time of about
300 s. When comparing computing times, one should
remember that two diagrammatic codes exist, the one we
are making use of [7], and one limited to MPB calcula-
tions [5], which is almost twice as fast. We can conclude
that, when applied to a CAS zero-order space, our
procedure is only slightly more expensive than CASPT2
[19], although the latter is specialized to treat the
S � CAS case.

We have also run tests with selected S spaces. Two
series of calculations have been performed. The ®rst one,
with smaller S spaces, is of approximately the same
quality as the calculations with S � CAS: we have re-

quired that the square norm of the EN ®rst-order cor-
rection to the wave function is about 0.10, the value
obtained with S � CAS using the equilibrium geome-
try. In the second series of calculations we have reduced
the square norm of the ®rst-order correction to the value
of 0.060 (our standard in the study of the energy surfaces
of CH3NO�.

The results are shown in Tables 2 and 3 and in Figs. 4
and 5. They con®rm the conclusions of the previous

Fig. 3. CH3NO EN and MPB ground state energies (CIPSI with
S � CAS, NS � 32144). The numbers near the points are the
dimensions of the Gj spaces. The points for which WG is closest to 1
correspond to WG � 0:99999. In this point NG � 10893 for the equi-
librium geometry and NG � 2724 for dissociation. eq � optimized
equilibrium geometry; diss � optimized geometry at the CAN
dissociation. � � points used in the extrapolation;� � points shown
for comparison

Table 3. Comparison of full two class and extrapolated three class
results. Dissociation and vertical excitation energies (in kcal/mol)
for the CH3NO molecule. Same zero-order spaces and extrapola-
tion procedure as in Table 2

Full two class calc. Three class + extrapa

MP EN MP EN

S � CAS �Ediss�b 37.64 34.30 ).13 ).13
Sel-S �Ediss�b 39.80 35.85 .41 .46
Sel-S �ES0 ! T1�c 22.31 25.50 ).42 ).42
Sel-S �ES0 ! S1�d 42.91 44.78 ).28 ).29
Sel-S �Ediss�b 39.94 36.36 .56 .66
Sel-S �ES0 ! T1�c 22.81 25.00 .25 .27
Sel-S �ES0 ! S1�d 43.20 44.26 .33 .34

a Energy di�erences versus full two class results.
b Ground state dissociation energy. Experimental [27, 28]:
39.0 ¸ 40.3 kcal/mol.
c Vertical excitation energy to T1
d Vertical excitation energy to S1. Experimental [29, 30]:
42.4 kcal/mol.

Fig. 4. CH3NO ground state (S0) and excited state (T1 and S1) EN
energies (CIPSI with selected S space). The S space is selected,
aiming to obtain a square norm of the ®rst-order EN correction to
the wave function of the same order as in the calculation using the
CAS (0.100). The numbers near the points are the dimensions of the
Gj spaces. The points with WG � 1 correspond to a full two class
calculation. � � points used in the extrapolation; � � points
obtained with full calculation, shown for comparison

Fig. 5. CH3NO ground state (S0) and excited state (T1 and S1) EN
energies (CIPSI with selected S space). The S space is selected in
order to obtain a square norm of the ®rst-order EN correction to
the wave function equal to 0.060. The numbers near the points are
the dimensions of the Gj spaces. The points for with WG � 1
correspond to a full two class calculation. � � points used in the
extrapolation; � � points obtained with full calculation, shown for
comparison
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section: the extrapolation procedure for selected spaces
is less e�ective than in the case S � CAS, but is still
convenient and reliable. In Fig. 4 we again ®nd opposite
slopes for the equilibrium geometry and the dissociated
fragments, showing that the extrapolation may be im-
portant to determine energy di�erences. Excitation and
dissociation energies are given in Table 3. The errors in
the energy di�erences obtained with our extrapolation
procedure with respect to the full two class results are
practically negligible when S � CAS; they are of the
order of 0.4 kcal/mol for selected S spaces.

5 Conclusions

In this paper we have considered the approximation
introduced in a three class CIPSI calculation. A new
extrapolation procedure has been proposed to eliminate
this error and therefore to recover the results of a full
two class calculation. The extrapolation is e�ective and
reliable when employed in conjunction with the usual
CIPSI selection scheme, because it allows a considerable
reduction in computational e�ort with errors in the
energies of the order of few tenths of kcal/mol.

In the case of a CAS zero-order space the speed-up
obtained with the three class + extrapolation procedure
is more dramatic, because a very large number of highly
excited determinants in the zero-order wave function can
be safely neglected in the perturbation step. For the
CH3NO molecule the computer time drops from an
extimated 200 000 s of a full two class calculation to 991
(equilibrium geometry) or 493 (dissociated fragments),
without any practical loss in accuracy. On the other
hand, the completeness of a CAS is exploited in the very
e�cient CASPT2 algorithm, which yields approximately
the same results with comparable, although less, com-
putational e�ort.

In conclusion, the progress presented here in the
general purpose multireference perturbation CIPSI
algorithm makes it competitive with CASPT2: more
¯exible as to the choice of the zero-order space and to
the partition of the CI Hamiltonian, and comparable in
performance for CAS wave functions.
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